Myoplasmic resting Ca2+ regulation by ryanodine receptors is under the control of a novel Ca2+-binding region of the receptor
نویسندگان
چکیده
Passive SR (sarcoplasmic reticulum) Ca2+ leak through the RyR (ryanodine receptor) plays a critical role in the mechanisms that regulate [Ca2+]rest (intracellular resting myoplasmic free Ca2+ concentration) in muscle. This process appears to be isoform-specific as expression of either RyR1 or RyR3 confers on myotubes different [Ca2+]rest. Using chimaeric RyR3-RyR1 receptors expressed in dyspedic myotubes, we show that isoform-dependent regulation of [Ca2+]rest is primarily defined by a small region of the receptor encompassing amino acids 3770-4007 of RyR1 (amino acids 3620-3859 of RyR3) named as the CLR (Ca2+ leak regulatory) region. [Ca2+]rest regulation by the CLR region was associated with alteration of RyRs' Ca2+-activation profile and changes in SR Ca2+-leak rates. Biochemical analysis using Tb3+-binding assays and intrinsic tryptophan fluorescence spectroscopy of purified CLR domains revealed that this determinant of RyRs holds a novel Ca2+-binding domain with conformational properties that are distinctive to each isoform. Our data suggest that the CLR region provides channels with unique functional properties that modulate the rate of passive SR Ca2+ leak and confer on RyR1 and RyR3 distinctive [Ca2+]rest regulatory properties. The identification of a new Ca2+-binding domain of RyRs with a key modulatory role in [Ca2+]rest regulation provides new insights into Ca2+-mediated regulation of RyRs.
منابع مشابه
Dysregulated ryanodine receptors mediate cellular toxicity: restoration of normal phenotype by FKBP12.6.
Ca2+ homeostasis is a vital cellular control mechanism in which Ca2+ release from intracellular stores plays a central role. Ryanodine receptor (RyR)-mediated Ca2+ release is a key modulator of Ca2+ homeostasis, and the defective regulation of RyR is pathogenic. However, the molecular events underlying RyR-mediated pathology remain undefined. Cells stably expressing recombinant human RyR2 (Chin...
متن کاملControl of mitochondrial motility and distribution by the calcium signal
Mitochondria are dynamic organelles in cells. The control of mitochondrial motility by signaling mechanisms and the significance of rapid changes in motility remains elusive. In cardiac myoblasts, mitochondria were observed close to the microtubular array and displayed both short- and long-range movements along microtubules. By clamping cytoplasmic [Ca2+] ([Ca2+]c) at various levels, mitochondr...
متن کاملActivation of the skeletal muscle ryanodine receptor by suramin and suramin analogs.
Ca2+ release from skeletal muscle sarcoplasmic reticulum is activated by adenine nucleotides and suramin. Because suramin is known to interact with ATP-binding enzymes and ATP receptors (P2-purinergic receptors), the stimulation by suramin has been postulated to occur via the adenine nucleotide-binding site of the ryanodine receptor/Ca2+-release channel. We tested this hypothesis using suramin ...
متن کاملFunctional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes.
In skeletal muscle, dihydropyridine receptors are functionally coupled to ryanodine receptors of the sarcoplasmic reticulum in triadic or diadic junctional complexes. In cardiac muscle direct physical or functional couplings have not been demonstrated. We have tested the hypothesis of functional coupling of L-type Ca2+ channels and ryanodine receptors in rat cardiac myocytes by comparing the ef...
متن کاملStimulus-Dependent Regulation of Nuclear Ca2+ Signaling in Cardiomyocytes: A Role of Neuronal Calcium Sensor-1
In cardiomyocytes, intracellular calcium (Ca2+) transients are elicited by electrical and receptor stimulations, leading to muscle contraction and gene expression, respectively. Although such elevations of Ca2+levels ([Ca2+]) also occur in the nucleus, the precise mechanism of nuclear [Ca2+] regulation during different kinds of stimuli, and its relationship with cytoplasmic [Ca2+] regulation ar...
متن کامل